Using Quality Residuals To Build Soil

First things First:

Know Crop Requirements & Test Soil

- Test soil nutrients
- Test amendments or know sources
- Organic Material-Can you have too much
- <mark>_</mark> pH

Know crop requirements

Why use Amendments

- * To increase Soil Organic Matter Content *
- Which increases Water holding Capacity
- Provide nutrients for soil borne organisms
- Improves soil Health
- Reduces Fertilizer Demand
- Provides some nutrients and minerals
- Helps Soils Suppress Disease
 - *Healthy Soil = Healthy Plants

Beneficial Use Determination(BUD)

NYS DEC Issues a BUD for Material that has value.

Q. Will the residual provide benefit for its proposed use without harm to the plant/animal or the environment.

GRAS-Generally Regarded as Safe

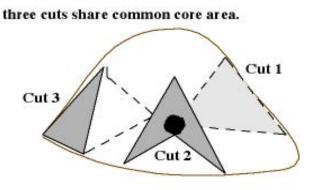
How Do We Determine the Best Uses for Residuals?

Use Our "Waste" as the **Resource** It Is!

Amendments are Comprised of Endless Feedstock and Combinations

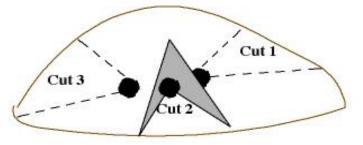
- Wood Chips
- Used Animal Bedding
- Food Processing Waste
- Spoiled Feed
- Recalled Organics
- Bio-Diesel Residual
- Digested Solids

Feedstock Continued

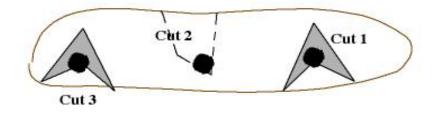

- Food Prep
- Trimmings & Spoilage
 Produce
- Pressings & Pummace
- Butcher Waste
- Whole Animals
- Dairy Processing Residuals
- Sludges

Properties of Amendments Considerations

- Unprocessed or Raw
- Aged
- Processed to add value
- May Serve as a fertilizer
- Organic Matter
- Regulated or not
- Application Dates


Sampling Scenario to Evaluate Amendment

Pile Type: Circular Heap


Pile Type: Oblong Heap

three cuts do not share core area but are close to each other ...

PileType: Windrow

three cuts do not share common core area at all.

Graphic by Woods End Research Lab

How do we determine what characteristics to analyze?

Cornell Waste Management Institute

Compost Characteristics

Feedstock: Diary cow manure, wood chips, sawdust, leaf and yard waste

Date of Analyses: 06/24/01, 7/14/01, 12/06/01

General Characteristics	Average
Maturity	6
Organic Matter	41.6%
Weed Seeds/Litre	2
Density	48 lb/ft ³
Solids	23%
C:N Ratio	17.5
pH	8.34
Conductivity	2.19
Nutrients (???) *A and M?	
Total Nitrogen (N)	1.3%
Total Phosphorus (P)	0.5%
Total Potassium (K)	0.7%
Total Calcium (Ca)	4.07%
Total Magnesium (Mg)	0.71%
Metals	
Copper	31.6 ppm
Iron	9603.8 ppm
Zinc	158.2 ppm
Arsenic	5.6 ppm
Cadmium	3.1 ppm
Plant Response	
Lepidium satium germination	98.5 %
Lepidium sativum weight	52.0 %

NYS DEC Rules for Metals Content in Residuals

Materials shall not exceed the following levels and be expressed in parts per million(ppm) on a dry weight basis.

As	Ba	Cd	Cr	Cu	Pb	Hg	Mo	Ni	Zn
41	1000	10	100	1500	250	10	54	200	2500

Manure Compost

- High in Organic Matter ?
- Low in contaminants
- Little garbage or inerts
- Can be high in P
- Pharmaceuticals
- Maturity

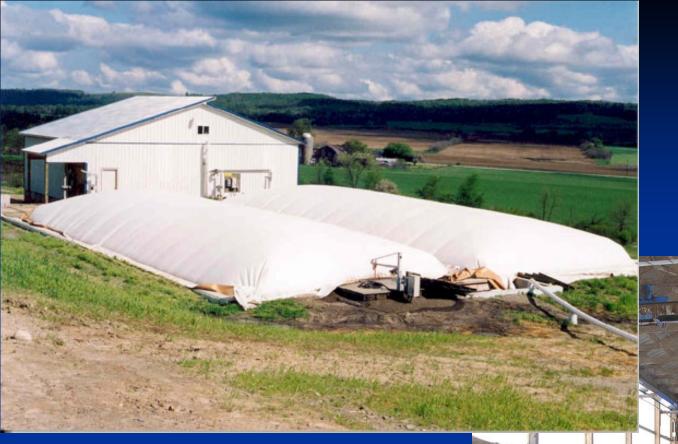
Temperature 104-170 degrees F

Quality Issues

Low Nutrient
High Carbon
Organic Matter
Chemicals-pesticides

Farm Comparison

	pH Range	Fecal Coliform	Weed Seed	Maturity	Chloride	Copper
Large Farm Data (over 500)	6.8-8.5	Low	Low	6-7	100-6000	High if used
Small Farm Data (under 500)	6.5-8.5	Low	Low	6-7	1000-2000	Low
Poultry	6.5-9.3	Low	Low	Low (due to ammonia)	40-11000	Low


Raw Manure

Composted Manure

Digested Solids

Parallel Digesters

Solids---What Now?

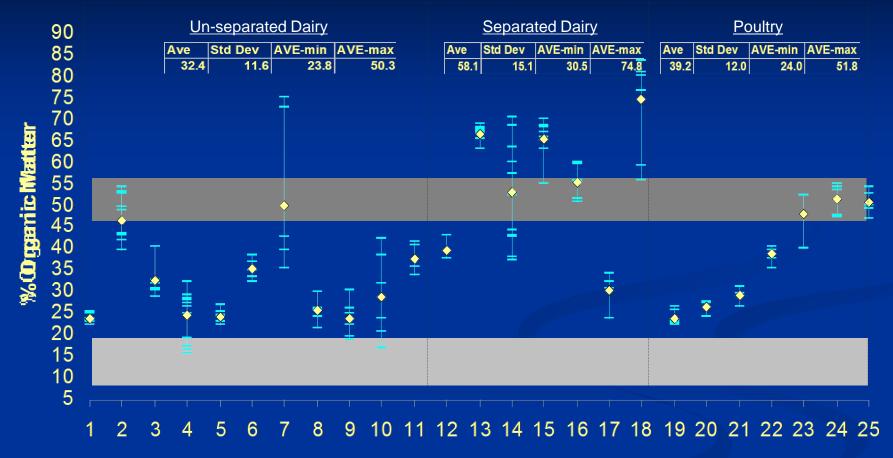
- Manure Solids or DMS
- Supply Crop Nutrients
- Do we need to Further Stabilize?

Composting Bedded Pack Cornell Waste

Management Institute

Manure Compost Samples

Average values for selected analytes


	рН	% Organic	Fecal Coliform	Need Seeds
		Matter	MPN/g (range)	Count/L
1A (n=6)	7.8	67	<2 to 800	1
2B (n=4)	7.7	28	<2 to 2	1
3F (n=6)	8.5	68	17 to 3500	0
3FB (n=4)	8.3	55	<2 to 11	0
4G (n=4)	7.9	24	<2 to 140	3
4GB (n=4)	7.9	25	140 to 1700	8
5H (n=4)	7.8	57	11 to 700	0
6PB (n=4)	7.9	87	1300 to 28000	0
7WA (n=5)	6.5	38	<2 to 300	6
8WI (n=6)	7.8	43	<2 to 2	98

Metal Results

	As	Cd	Cu	Hg	Pb
1A	<2.3	2.1	509.3	0.023	17
2B	6.3	1.6	34.9	0.039	24
3F	<2.3	2.4	529.0	0.029	19
3FB	<2.3	2.4	265.0	0.029	29
4G	18	3.6	28.9	0.024	56
4GB	29	3.6	30.1	0.057	58
5H	34	4	366.0	0.05	17
6PB	17	2.8	32.0	0.026	<8
7WA	5.7	1.7	26.1	<0.02	20
8WI	23	2.2	777.7	0.032	20
NYS Soil	<9	0.2	20	0.1	15
NYS 360		25	1000	10	250

(dry basis unless specified) (units ppm)

NYS Composts vs. Guidelines for Topsoil Mix Organic Matter

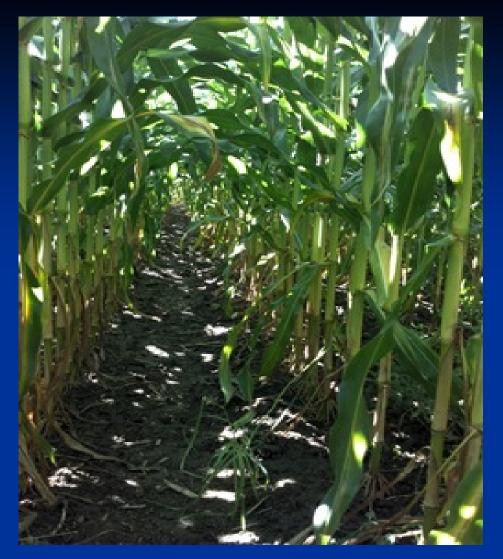
Farm

Figure 1. Suggested ranges of % organic matter for use in topsoil mix from Rodale - light shaded area (8% - 20%) and USCC - dark shaded area (50% - 60%). Diamonds indicate average value and tick marks represent single sample values. Bars show range of values.

Cornell Waste Management Institute – CSS Seminar

Comparison of CNAL analysis for charred paper residuals with (PR Char) and without (PRNL Char) lime to paper residuals with (PR) and without (PRNL) lime as produced.

				Dry Matter Basis								
Sample ID	рН	Salts	OM (%)	Tota N(%	+	NO ₃ -N (mg/kg)	P ₂ C (%	5	K ₂ O (%)	Total ((%)	C C:N Ratio	
PR Char	10.1	0.9	18.16	0.49	1.33	1.80	0.56		0.5	29.37	59.6	
PRNL Char	9.9	0.6	25.71	0.63	1.17	1.06	0.51		0.6	59.22	93.7	
PR	12.2	0.2	93.49	2.59	87.86	5.61	0.46)	0.4	80.67	31.2	
PRNL	7.9	0.6	128.9	1.7	99.35	93.25	0.67	7	3.0	112.4	66.1	
	Dry Matter Basis											
Sample ID	Na (mg/kg) Fe (mg/kg)			′kg)	Cu (mg/kg)	Zn (mg	Al	(mg/k	ag) Mr	n (mg/kg)		
PR Char	853		6063		41	1 123		6377		245	245	
PRNL Char	1110		8566	566 82		131	131 9		9560			
PR	948		3924 112		112	101		3459		253		
PRNL	387		2294	2294 103		45	45 25		2586 377			


Corn Trials in Washington Co.

Seedling corn on July 7, 13 days after planting.

Corn on July 30 when mid-season soil samples were taken. Notice that the corn across the plots is quite uniform.

Conclusion: Un-limed paper mill fiber spread during the spring of corn planting does not compete with field corn for nitrogen, but rather releases it.

September 20, leaves below the ear were bent, It was determined to be drought damage, not nitrogen deficiency.

Paper Fiber

Soil nitrate, pH and OM did not show any correlation to paper fiber rates. This was probably due to the erratic weather through the growing season and the associated dynamics of organic matter decomposition. Although replication was reduced from excess rain, a clear trend in silage yield was seen as the application rate of paper fiber increased from 0 tons/acre to 30 tons/acre. Due to erratic weather through the growing season, other conclusions could not be made. Continued addition of PR to field corn may be of benefit for yield.

Paper mill residuals differ depending on the process and associated chemicals needed to create the paper for the intended use.

Leaf & Yard Residuals

Inerts- garbage Herbicides/Pesticides

Lead Salt Level

Composting Bedded Pack

Biosolids

Management Institute

Biosolids Compost

- Inerts
- Chemical Contaminant
- Bacteria
- Viruses
- Drugs
- Change in feedstockUse Limitations

Questions Organic Buyers/Users might Ask

- 1. What feedstock are used?
- 2. Are Copper Sulfate or Formaldehyde used on farm?
- 3. Are pesticides and herbicides used? For what use?

Questions Buyers Might Ask (con't)

- 4. How long is material composted, and by which method?
- 5. Has hay or bedding been imported from midwest or west?

6.**** Has compost been tested? Are results available?

Spreading Compost Product

Application to 1:1 ROCK SLOPE 2" compost mulch w/native seed mix Barton Creek Development – Austin, TX AUGUST 17, 2002

8 MONTHS LATER IRRIGATION INSTALLED, NEVER USED

Hydro-seed with Road Kill Compost/Soil Mix Cornell Waste Management Institute

ornell Waste

JAN 11 2005

Filter Tubes Installed for Storm Water Protection

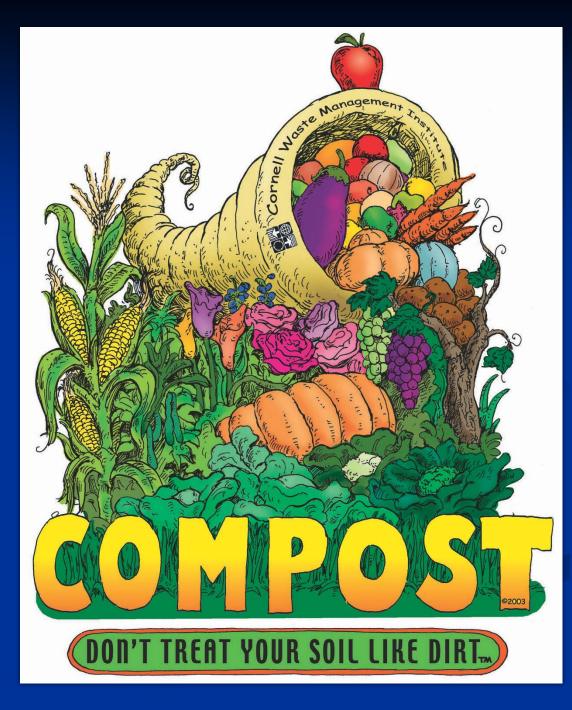
Tree Establishment

3 years without amendment

and the second

3 years with

Landscaping Project



Recycling Organics Makes Good Sense!

Healthy Soils = Healthy Food!

cwmi.css.cornell.edu

